Communications to the Editor

dation instrumentation support (CHE 76-05926; Bruker 200 MHz NMR) is also gratefully acknowledged. We thank Professor C. P. Casey (University of Wisconsin) for details of related studies in his laboratory.

References and Notes

- (1) J. A. Kent, Ed., "Riegel's Handbook of Industrial Chemistry", 7th ed, Von Nostrand-Reinhold, Princeton, N.J., 1974. H. H. Storch, N. Golumbic, and R. B. Anderson, "The Fischer–Tropsch and
- (2) R. Storen, N. dolumbic, and R. S. Anderson, The Fischer Properties
 Related Syntheses", Wiley, New York, N.Y., 1951.
 G. H. Olivé and S. Olivé, Angew. Chem., Int. Ed. Engl., 15, 136 (1976).
- (4) W. A. Goddard, S. P. Waich, A. K. Rappe, T. H. Upton, and C. F. Melium,
- J. Vac. Sci. Technol., 14, 416 (1977) (5) G. C. Demitras and E. L. Muetterties, J. Am. Chem. Soc., 99, 2796 (1977)
- (6) Sold by the Aldrich Chemical Co. as a (a) 1.0 M THF solution under the trade name Super Hydride; (b) 0.5 M THF solution under the trade name K-Selectride
- J. P. Collman and S. R. Winter, *J. Am. Chem. Soc.*, **95**, 4089 (1973). J. A. Gladysz, G. M. Williams, W. Tam, and D. L. Johnson, *J. Organomet.* (8) Chem., 140, C1 (1977).
- J. A. Gladysz and J. C. Selover, Tetrahedron Lett., 319 (1978)
- C. P. Casey and S. M. Neumann, J. Am. Chem. Soc., 98, 5395 (1976).
- S. R. Winter, G. W. Cornett, and E. A. Thompson, J. Organomet. Chem., (11)133, 339 (1977).
- (12) Anal. Calcd for C14H9LIO11Re2: C, 22.95; H, 1.24; Li, 0.95; Re, 50.84. Found: C, 22.76; H, 1.30; Li, 1.07; Re, 50.61. When dissolved in CDCI3 (In which 2 decomposes), the ¹H NMR spectrum indicated the presence of 0.93 \pm 0.06 equiv of THF relative to p-di-tert-butylbenzene standard.
- (13) See E. O. Fischer, E. Offhaus, J. Müller, and D. Nöthe, Chem. Ber., 105, 3027 (1972); E. O. Flscher and E. Offhaus, Ibid, 102, 2449 (1969)
- (14) C. P. Casey, G. R. Cyr, R. L. Anderson, and D. F. Marten, J. Am. Chem. Soc., 97, 3053 (1975)
- (15) (a) Isolated yield; (b) spectroscopic yield; (c) gas chromatographic yield.
 (16) (a) Anal. Calcd for C₉K₂O₉Re₂: C, 15.38; K, 11.13; Re, 53.00. Found: C, 15.42; K. 11.42; Re, 53.12. IR (cm⁻¹, THF): 2033 (w), 2010 (m), 1966 (s), 1924 (s), 1880 (m), 1860 (m). (b) The reaction of $Re_2(CO)_{10}$ with 2 equiv of Li(C2H5)3BH yields a spectroscopically equivalent material believed to LizRez(CO)9
- W. Beck, W. Hieber, and G. Braun, Z. Anorg. Alig. Chem., 308, 23 (1961); see also J. E. Ellis and E. A. Flom, J. Organomet. Chem., 39, 263 (1975).
- J. A. Gladysz and W. Tam, *J. Org. Chem.*, In press. Utilization of ReMn(CO)₁₀ specifically ¹³C labeled on Re or Mn *does not* lead to an unambiguous structure for 3: See ref 14 for an acyl transfer reaction from manganese to rhenium.
- (20) C. P. Casey and S. M. Neumann, J. Am. Chem. Soc., preceding paper In this issue.
- (21) H. J. Sevc and G. A. Junk, J. Am. Chem. Soc., 89, 2836 (1967); D. S. L. Brown, J. A. Connor, and H. A. Skinner, J. Organomet. Chem., 81, 403 (1974)
- Experiments have been addressed to this point: J. A. Gladysz and J. H. (22)Merrifield, unpublished work
- (23) NOTE ADDED IN PROOF. The 50.32-MHz ¹³C NMR spectrum of 2 at -60 °C in THF-d₈ which is 0.06 M In Cr(acac)₃ (conditions for low temperature quadrupole decoupling) shows 5 carbonyl resonances (202.1, 198.6, 197.9, 193.0, 187.7 ppm; relative areas 1.6:1:2.8:2.6:0.7) indicating that 2 is likely the cis Isomer.

J. A. Gladysz,* Wilson Tam

Contribution No. 3940 Department of Chemistry, University of California Los Angeles, California 90024 Received January 4, 1978

$6,9\alpha$ -Oxido-11 α , 15 α -dihydroxyprosta-6, (E)-13-dienoic Acid Methyl Ester and 6.9α : 6.11α -Dioxido- 15α -hydroxyprost-(E)-13-enoic Acid Methyl Ester. Two Isomeric Forms of Prostacyclin (PGI₂)

Sir:

The isolation¹ and structural characterization² of prostacyclin (PGI₂, 1, R = H) coupled with the discovery of its potential value in acute mycoardial ischemia³ has opened a new chapter of prostaglandin research.⁴ Prostacyclin is a rather unstable molecule in aqueous, acidic or neutral media, breaking down to 6-keto-PGF_{1 α} (2, R = H), in equilibrium with its lactol form.^{2a} The isolation of 6-keto-PGF_{1 α} itself from various biological tissues has also been reported recently.⁵ Although 2 does not appear to be as important biologically as

is the enol form 1, the possible regeneration of 1 from 2 would be nonetheless deserving of careful chemical and biological study. Herein we report two isomeric forms (3 and 4) of prostacyclin both of which were derived chemically from 6keto-PGF_{1 α} and one of which showed a significant biological activity.

Treatment of prostacyclin methyl ester $(1, R = Me)^{2a,6}$ in methanol with a small amount of acetic acid at 25 °C for 2 h, addition of excess triethylamine, extraction with ether, and concentration afforded the crude methoxy lactol 5. The 'H NMR and IR spectra of 5 indicated the absence of 5,6-olefinic unit.7 The crude product was dissolved in hexamethylphosphoric triamide, and the mixture was heated at 180 °C for 14 min to effect elimination of methanol. The product was isolated from this reaction simply by extraction with ether, drying, and removing the solvent.⁸ Purification of the acid-sensitive enol ether 3 was effected by column chromatography on silica gel (EtOAc-hexane-Et₃N, 50:50:0.1), and the product 3 so obtained as a colorless oil was >98% pure by GC analysis and exhibited fully consistent ¹H NMR (double-resonance technique) and IR spectra.9 The same enol ether was prepared from 6-keto-PGF_{1 α} methyl ester (2, R = Me) by an alternate sequence consisting of (1) trimethylsilylation by excess trimethylsilyldiethylamine (TMSDEA) at 25 °C for 12 h, (2) GC separation of the major component,¹⁰ and (3) removal of the remaining trimethylsilyl groups (K₂CO₃-methanol, 0 °C for 1 h) to produce after column chromatography the pure enol ether 3 (44% yield from 2).

Independent evidence for structure 3 was obtained by the clean hydrolysis of 3 to 6-keto-PGF_{1 α} methyl ester,¹¹ a property paralleling that of PGI₂ methyl ester.^{2a} Furthermore, oxidative cleavage of the C_6 - C_7 olefinic unit of 3 was effected by (1) acetylation of 3 using acetic anhydride-pyridine at 25 °C for 18 h, (2) treatment with excess ozone in chloroform at -25 °C for 15 min followed by exposure to hydrogen peroxide-acetic acid at 50 °C for 12 h, and (3) esterification with diazomethane to furnish the pentaester 6.12

Prolonged heating of either PGI₂ methyl ester or the regioisomer 3 afforded a small amount of nonpolar oily product. It appeared to us that this component might be the internal ketal 4 and ought to be accessible as a major product by a carefully controlled reaction conditions, and an experimental study was undertaken.

6-Keto-PGF_{1 α} (2, R = Me, 0.95 g), upon treatment with powdered molecular sieve 4A (4 g)¹³ and kiesel gel (4 g)¹⁴ in dry methylene chloride (50 mL) with vigorous stirring at 25 °C for 4 h followed by filtration and purification by column chromatography, afforded the desired ketal 4 as a principal product (40% yield), whose structure was apparent from ¹H NMR and double-resonance ¹H NMR experiment as well as IR analysis.¹⁵ Structure 4 was further confirmed by the following observations. (1) Hydrolysis of 4 with a mixture of acetic acid-water-tetrahydrofuran gave 6-keto-PGF_{1 α} methyl ester. (2) Exposure of 4 to $AcOD-D_2O-THF$ produced the 6-keto-PGF_{1 α} methyl ester with no deuterium incorporation.¹¹ (3) Treatment of 4 with excess *p*-nitrobenzoyl chloride-triethylamine afforded the monobenzoate of allylic alcohol.¹⁶ (4) Silylation of 4 with TMSDEA gave the monotrimethylsilyl derivative by mass spectral assay. (5) The methoxy lactol 5 was produced by methanolysis of 4. Apart from being of considerable interest with regard to biological activity, the ketal 4 represents an internally protected form of 6-keto-PGF_{1 α} methyl ester which allows a variety of useful selective transformations.

In the preliminary test, the endo-enol ether 3 shows the higher potency to natural PGE1 in inhibiting platelet aggregation and the lower to PGI2 methyl ester, while the internal ketal 4 was almost inactive.¹⁷ Further study of the biological activities of 3 and 4 are in progress and will be published in due course.

References and Notes

- (a) C. Pace-Asciak and L. S. Wolfe, Biochemistry, 10, 3657 (1971); (b) S. (a) C. Pace-Asciak and L. S. Wolfe, *Biochemistry*, 10, 3037 (1971), Moncada, R. Gryglewski, S. Bunting, and J. R. Vane, *Nature*, 263, 663 (1976); (c) R. Gryglewski, S. Bunting, S. Moncada, R. J. Flower, and J. R. Vane, *Prostaglandins*, 12, 685 (1976); (d) S. Moncada, R. Gryglewski, S. Bunting, and J. R. Vane, *Ibid.*, 12, 715 (1976); (e) S. Bunting, R. Gryglewski, S. Moncada, and J. R. Vane, *Ibid.*, 12, 897 (1976).
- (2) (a) E. J. Corey, G. E. Keck, and I. Székely, J. Am. Chem. Soc., 39, 2006 (1977); (b) R. A. Johnson, D. R. Morton, J. H. Kinner, R. R. Gorman, J. C. McGuire, F. F. Sun, N. Whittaker, S. Bunting, J. Salmon, S. Moncada, and (a) J. L. Marx, Science, 196, 1072 (1976).
 (a) J. L. Marx, Science, 196, 1072 (1977); (b) A. M. Lefer, M. L. Ogletree,
- (3)J. B. Smith, M. J. Silver, K. C. Nicolaou, W. E. Barnette, and G. P. Gasic, Science, in press.
- For a recent review, see K. C. Nicolaou, G. P. Gasic and W. E. Barnette, (4) Angew, Chem., in press.
- (5) (a) W. C. Chang, S. Murota, M. Matsuo, and S. Tzurufuji, Biochem. Biophys. Res. Commun., 72, 1259 (1976); (b) C. Pace-Asciak, J. Am. Chem. Soc... 98, 2348 (1976); (c) W. Dawson, J. R. Boot, A. F. Cockerill, D.-N. B. Mallen, and D. J. Osborn, *Nature*, 262, 699 (1976).
- (a) K. C. Nicolaou, W. E. Barnette, G. P. Gasic, R. L. Magolda, W. J. Sipio, (6) M. J. Silver, J. B. Smith, and C. M. Ingerman, *Lancet*, I, 1058 (1977); (b) K. C. Nicolaou, W. E. Barnette, G. P. Gasic, R. L. Magolda, and W. J. Sipio, J. Chem. Soc., Chem. Commun., 630 (1977); (c) R. A. Johnson, F. coln, J. L. Thompson, E. G. Nidy, S. A. Mizsak, and U. Axen, J. Am. Chem. Soc., 99, 4182 (1977)
- ^1H NMR (CDCl_3): δ 3.13 and 3.21 (2s, 3 H, OCH_3), 3.66 (s, 3 H, (7) COOCH₃).
- ¹H NMR analysis of the crude product revealed the presence of a small (8) amount of PGI₂ methyl ester and its stereoisomer, which could be removed by careful column chromatography (TLC Rr value (ether-acetone-Et₃N,
- 75:25:0.1): 1, 0.41; 2, 0.18; 3, 0.43.
 (9) ¹H NMR (CDCl₃): δ 2.22 (m, 1 H, C(12) H), 2.93 (m, 1,H, C(8) H), 3.76 (m, 1 H, C(11) H), 4.03 (m, 1 H, C(15) H), 4.65 (d, 1 H, C(7) H), 4.84 (m, 1 H, C(9) H), 5.47 (m, 2 H, C(13 and 14) H). IR (CHCl₃): 1665 cm⁻¹ (enol ether).
 (10) 5 mm × 1.5 m column of 5 % SE-30 on Shimalite-W; column temperature, 260 %C; the
- 260 °C; injection temperature, 280 °C; detector temperature, 260 °C; He, 1.6 kg/cm²; $t_r = 18$ mm. Elimination of Me₃SiOH was effected during this operation.
- (11) The enol ether 3, upon treatment with AcOD-D₂O-THF, produced the 7-The end emer 3, upon treatment with ACOD_20-Thr, produced in re^{-46} . Ac6-keto-PGF_{1 α} methyl ester: mass spectrum (after trimethylsilylation) $m'e^{-511}$, 421, 350, 325, 278, 263, 217, 199, 173, 143. See ref 2b for the analysis of fragmentation pattern of 6-keto-PGF_{1 α} methyl ester. The mass spectra of 5-d derivative showed the following peaks: 511, 421, 350, 325, 77, 263, 217, 199, 173, 144
- ^1H NMR (CDCl_3): δ 2.07 (s, 3 H), 3.32 (dd, 1 H), 3.57 (dd, 1 H), 3.68 (s, 3 H), 3.70 (s, 3 H), 3.74 (s, 3 H), 4.15–4.55 (m, 2 H). IR (CHCl_3): 1735 cm^{-1}. mass (12)

spectrum (after trimethylsilylation): m/e 402 (M⁺), 371, 329, 297, 270, 242, 210, 200, 199, 182, 151, 143, 111,

- (14)
- Freshly powdered and dried in vacuo at 160 °C for 2 h. Dried in vacuo at 160 °C for 2 h before use. ¹H NMR (CDCl₃): δ 1.90 (m, 2 H, C(7) H), 2.12 (m, 2 H, C(10) H), 2.80 (m, 1 H, C(12) H), 2.87 (m, 1 H, C(8) H), 4.00 (m, 1 H, C(15) H), 4.33 (m, 1 H, C(11) (15)H), 4.74 (m, 1 H, C(9) H), 5.44 (m, 2 H, C(13, 14) H). IR (liquid film): 3400 and 1735 cm⁻¹ (no enc) ether absorption). 4 was homogeneous by GC and TLC (R_1 0.56 (ether-acetone-Et₃N, 75:25:0.1)) analysis. Surprisingly, the NMR spectrum of 4 is almost identical with that of $6,9\alpha$ -oxido-11,15dihydroxyprosta-7,13-dienoic acld methyl ester (see C. Pace-Asciak and L. S. Wolfe, Biochemistry, 10, 3657 (1971)), the synthesis of which is undergoing in our laboratories
- ¹H NMŘ (CDCl₃): δ 5.47 (m, 1 H, C(15) H), 7.15–7.4 (AB, 4 H). IR (liquid film): no OH absorption.
- When compared with PGE1, 3 was 11.7 times more potent as an inhibitor of platelet aggregation in ADP induced platelet rich plasma from rat.

Katsuichi Shimoji, Yoshitaka Konishi, Yoshinobu Arai, Masaki Hayashi*

Ono Pharmaceutical Co., Ltd., Research Institute, Shimamoto, Osaka, 618 Japan

Hisashi Yamamoto

Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822 Received November 4, 1977

Conformational Equilibrium in the Backbone of Cyclic Tripeptides¹

Sir:

NMR measurements and x-ray studies of cyclic tripeptides such cyclo[Pro₃],^{2,3} cyclo[Hyp-Pro₂],³ and cyclo[Sar₃]⁴ indicate a C_3 symmetric backbone conformation ("crown").⁵ We have now synthesized the N-benzylglycine (Bzl·Gly) containing cyclic tripeptides of the general structure cyclo- $[Pro_x - Bzl \cdot Gly_{3-x}]$ (1, x = 0; 2 x = 1; 3, x = 2) with the aim

Figure 1. Part of the 270-MHz 'H NMR spectrum of cyclo[Pro-Pro-Bzl-Gly] in CDCl₃ (top) and Me₂SO (inverted on bottom).

© 1978 American Chemical Society